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Abstract. We study the features of the current density distribution in a thin plate of a 
compensated metal under pinch-effect conditions. It Is established that the current structure 
possesses a sign-oltemating character. There exist space layers where the current flows in the 
opposite direction to an electric 6eld in the sample. The current density spatial oscillations x e  
caused by the non-linearity stipulated by the influence of a non-uniform magnetic field of the 
current on the metal conductivity. It is shown that the sign-altemoting current distribution results 
in oscillations in the sample I -V  characteristics. These oscillations ax observed experimentally. 

1. Introduction 

An electric current flowing in a metal is the source of a magnetic field which affects 
the dynamics of conducting electrons. This influence results in a dependence of the 
sample conductivity on the distribution of the .intrinsic magnetic field of the current. This 
magnetodynamic mechanism of non-linearity is typical for pure metals at low temperatures. 
In a static case, the magnetodynamic non-linearity is highly pronounced under conditions 
of the classical size effect, where it causes a deviation in the I-V characteristics (cvc) of 
the sample from Ohm’s law. In this paper we shall analyse the non-linear conductivity of 
a metal plate whose thickness d is much less than the electron mean free path I: 

d << 1. (1.1) 

We shall assume that electron~scattering on a sample surface is diffuse. 
Such an analysis for the case of relatively weak currents was first carried out in [1,2]. 

It was noted therein that a group of trapped electrons is formed inside the plate as a result 
of the influence of the intrinsic magnetic field of the current on the electron motion. The 
trapped electrons appear in the sample owing to the antisymmetry of the magnetic field 
distribution. They wind around a plane where the magnetic field changes sign, do not 
collide with the diffuse plate boundaries, and interact with the electric field over their entire 
free path. For small enough values of the current to ensure that the inequality 

d < R  (1.2) 
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holds, the relative number of the trapped electrons is of the order of (d/R)’/’. Here 
R - cpF/eH is the characteristic radius OF curvature of the electron trajectory in the 
intrinsic magnetic field of the current, H is the value of this field at the sample surface: 

. . ... . . . (1.3) . ... . 
2irI H = -  

c 

I is the current per sample width, -e and PF are the charge and the Fermi momentum of 
an electron. and c is the speed of light. The trapped electron conductivity may be evaluated 
as 

It increases as the current increases, and becomes dominant within the interval of the currents 
where 

d << (Rd)’” <<I. ( 1.5) 

Here uo is the static conductivity of a bulk sample and (Rd)’” is the characteristic length 
of a trapped electron trajectory arc. For this reason the linear portion of the cvc, which 
holds in the interval 

d <<I << (Rd)’/’ (1.6) 

is replaced by a square-root form under conditions ( I S ) .  
It should be noted that, in contrast to other known non-linear mechanisms, the 

magnetodynamic non-linearity results in a decrease in sample resistance in the weak-current 
region (1.2). This effect has been observed in Zn [3] and Ga [4], and was investigated in 
detail for W and Cd [5,6]. 

The analysis of the magnetodynamic non-linearity in the range of srfong currents, where 
the condition 

R << d (1.7) 

is satisfied, shows [7] that a strong pinch-effect takes place in plates of compensated metals. 
The current density proves to be highest within a layer about 8R in thickness near the middle 
of the sample. The conductivity in this pinch layer is determined by the trapped electrons 
(trajectory 1 in figure 1) and is of the order of cro. Outside this central region the electrons 
move in the strong magnetic field ofthe current along a near-circular Larmor orbit, whose 
radius is about R. Therefore, their contribution to the conductivity is much smaller than UO. 

If one neglects this contribution, the voltage will increase quadratically with current in the 
region (1.7). 

Thus, the magnetodynamic non-linearity results in an increase of the plate resistance in 
strong currents. This statement is in accordance with the experimental data [4-6]. It should 
be noted that the increase of the resistance was accompanied by the cvc oscillations. The 
nature of these oscillations has not yet been understood. The main aim of this paper is to 
propose a possible explanation of the origin of this phenomenon. 

We associate these oscillations with the contribution of the Larmor electrons to the 
metal conductivity under conditions of the pinch effect mentioned above. According to 
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I @ H  - d / 2  
Figure 1. Schematic representation of the geometry of the problem and Vajecrories of the 
Vapped ( I ) .  Lannor (2). and surface (3) electrons in the intrinsic magnetic field of lhe current. 

our analysis, the conductivity of this group is caused by the drift of the electron orbits 
in the non-uniform intrinsic magnetic field of the current. Therefore, there exists a non- 
local relationship between the current density of the Larmor electrons and the gradient of 
the magnetic field. This relationship provides a trajectory transfer of the current from the 
pinch layer to the periphery of the sample. As a result, the sign-alternating current structure 
appears. This means that the peripheral part of the plate turns out to be broken into Larmor- 
current layers with a thickness of about 2R. The sign of the current density differs in the 
neighbouring layers. The number of the current layers depends on the value of the total 
current, and proves to be about dj2R. The increase of this number with the current is the 
reason for the cvc oscillations. 

2. Statement of the problem: electron dynamics and current density 

2.1. Geometry of the problem, magnetostatic equation and boundary conditions 

We shall consider an unbounded plate of compensated metal through which a current I is 
flowing. The y axis is directed along the current, the s axis is normal to the plate, and the 
z axis is collinear to the intrinsic magnetic field H(x )  of the current. The origin of the 
coordinate system is chosen to be in the middle of the plate. We suppose that the plate 
thickness d is much smaller than the electron mean free path 1. 

We shall analyse the current density distribution assuming that the metal is isotropic. 
For simplicity, we shall consider the electron and hole Fermi surfaces to be identical spheres. 
We also assume the masses, as well as the mean free paths, of the electrons and holes to be 
equal. In this situation there is no Hall effect in the metal, i.e. the non-diagonal components 
of the conductivity tensor are equal to zero. 

For the chosen geometry the magnetostatic equation has the form 

dH(s) 4n . 
dx C 

- J ( X )  
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where j ( x )  is the current density. The boundary conditions to use with this equation are 
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H ( - d / 2 )  = - H ( d / 2 )  = H .  ( 2 2 )  

From Maxwell's equation rotE = 0 it follows that the electric field E,. = E within the 
plate is uniform. 

2.2. Trapped. Larmor and surface electrons 

We now discuss the dynamics of charge carriers in a strong non-uniform magnetic field 
H ( x ) .  Since the electron and hole motion differ only in their direction, we need only 
consider the dynamics of the electrons. It should be kept in mind that the contributions 
of electrons and holes to the diagonal components of the conductivity add together, while 
those to the non-diagonal components compensate each other. 

Let us pick a gauge for the vector potential of the form 

A = (0 A@); 0)  A(x )  = dx'H(x'). (2.3) 

The constants of electron motion in the field H(x) are the total energy, which is equal to 
the Fermi energy 

E F  = p$/2m (2.4) 

s' 

as well as the generalized momenta 

pz =muL p y  =mug  - eA(x) / c .  (2.5) 

Here m is the electron mass, and uz and uy are the components of the electron velocity. 
The velocity component U, is 

ax = W / m ) [ p :  - ( p y  -k e A ( x ) / ~ ) ~ l ' / *  PL = (P: - P , )  I (2.6) 

From the condition of the non-negativity of the subradical expression in (2.6). one can find 
the range of admissible values for the integrals of electron motion: 

2 112 

p , (x )  = - P I  - eA(x) / c  C pr < P I  - eA(x) / c  = p:(x).  (2.7) 
This range is presented schematically in figure 2. From this figure it is clear that the 
electrons can be divided into three groups according to the character of their motion. 

2.2.1. Trapped electrons. These electrons move along trajectories of type 1 in figure 1. The 
half period of their motion along the x axis is 

The turn points X I  c xz  are the roots of the equation 

P;(x) = P y .  (2.9) 

- eA(x)/2c < PI  C PF (2.10) 

The trapped electrons occupy the following range in momentum space ( p l ,  p y )  

p;(x) C P,. < p:(O) = P I .  

This electron group is present within the pinch layer 1x1 < X O ,  where xo is the positive toot 
of the equation 

elA(xo)l/c = 2PF. (2.11) 
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Figure 2. Phase space (py .  x )  and regions occupied by the groups of the trapped (I), L m o r  
(2) and surface (3) eleclrons. 

2.2.2. Larmor electrons. These electrons are characterized by trajectories of type 2 in 
figure 1. The half period of their motion is defined by (2.8). However, the turn points 
XI < x2 are roots of the equations 

P;(x )  = Py P, + ( x )  = P y .  (2.12) 

The range of momentum space (pl, p,.) appropriate to this electron group is 

0 4 PI < PF p;(x)  4 Py 4 PT(x) .  (2.13) 

2.2.3. Surface elecrrons. The trajectories of these electrons are presented in figure 1 by 
curves 3. The momentum space range occupied by them is 

e(A(x)  - A(d /2 ) ) /2c  4 PI 4 PF p;(d/2)  4 pY 4 p:(x). (2.14) 

In the case of diffuse electron scattering, the contribution of the surface electrons to the 
current is found to be small: its relative value is of the order of R f I << 1. Therefore, we 
shall not include them in the following calculation of the current density. 

2.3. Current densiiy of the trapped and Larmor electrons 

The current densities for the corresponding groups of particles are rather simple to calculate 
by means of standard methods for solving the kinetic equation. This equation is linearized 
with respect to the electric field E ,  while the entire non-linearity is stipulated by the magnetic 
field H ( x )  in the Lorentz force. Leaving aside the calculations, we present the expression 
for the current density of the trapped and Larmor electrons [7] 

jap,L(x) = -- dpldpypl  uy ( x )  K E x ; ,  '( ')sh(ur(x; x' ) )  

'( ')ch(ur(xz: x ' ) )  (2.15) 

27f O b E S  P i 1  om& (P: - P:)1'2lux(x)l 

ch(ur(x1; x ) )  xr &'U x 

s h ( W  1, Iv~(x')l 
+ 
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Here U = UF/I is the frequency of the electron bulk collisions, Orrap and OL are the ranges 
in momentum space (pi, p y )  occupied by the trapped (2.10) and Lannor (2.13) electrons 
respectively. The quantity 

(2.16) 

represents the time interval of electron motion between the points x and x’ 

3. Current density under conditions of the pinch effect 

3.1. Asymptotic expansion of the current density 

The asymptotic expansion of the current density of the trapped electrons, in powers of 
UT - Rjl  <( 1, begins with a term *at depends neither on the value UT nor on the degree 
of inhomogeneity of the intrinsic magnetic field of the current. The value of the integral 
(2.15) is determined by the electrons at arbitrary incident angles onto the plane x = 0. 
Therefore, the conductivity of the trapped particles contains no small parameter. and is of 
the order of uo [7]: 

juap(x)  aoE 1x1 < XO. (3.1) 

The main term in the expansion of the current density of the Larmor electrons is 

Integrating by parts over x‘ in (3.2);and changing the order of integration, we obtain 

The turn points xjmin and xzmer are roots of the equations 

pT(xlmin) = P ; ( x )  ~ ~;(x~man) = P;(X) .  (3.4) 

The range O i ( x , x ’ )  of the momentum space is defined by the following inequalities: 

e M . 4  - A(x’)l/2c < PI < PF 

eIA(x’) - A(x)lPc C PI < PF 
P;@‘) < pr < P;(x)  x < 1’ 

x’ < x .  

(3.5) 

(3.6) p;(x)  < py < P;(x’) 

The expansion term (3.3) of the current density of the Larmor particles is non-zero 
because of the inhomogeneity of the magnetic field. This means that the conductivity of the 
Larmor electrons in the ground approach with respect to the parameter vr -, R / l  << 1 is 
connected with the drift of their orbits in the field H ( x ) .  Note that the relationship between 
the quantities j L ( x )  and dH(x)/dx is non-local. The next term of this expansion gives the 
known expression for the magnetoconductivity 

(3.7) 

We shall neglect this current, since it is small in comparison with (3.3). 
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3.2. Trajectory current transfer and sign-alternating curient structure 

The Larmor electrons move in a strong magnetic field of consfant sign. Therefore. one 
would cxpcct that thc conductivity of this electron group will be less than the conductivity 
of the trapped electrons. Taking this into account. we shall solve the problem of the current 
density distribution over the thickness of the plate by an iterative method. 

In the ground approximation we consider only the contribution of the trapped electrons 
to the current. The corresponding current distribution, describing the pinch effect [7], has 
the following form: 

The current-voltage characteristics of the plate in this approximation has a parabolic shape: 
V c( 1'. The distribution of the intrinsic magnetic field of the current (3.8) is 

- H ( X / X O )  

-Hsign(x) 
1x1 6 XO 

xo < 1x1 4 d/2 
H'O'(x) = (3.9) 

with 

xo = 4R. 

Taking into account that the function j ( x )  is even, we shall carry out further analysis 
of the current structure assuming 

0 6 x 6 df2 .  (3.10) 

In the next approximation we  have to consider the contribution of the Larmor electrons 
to the current. For this purpose, using the magnetostatic equation (2.1) and the asymptotic 
expression (3.3), one can obtain the integral equation for the current density of the Larmor 
electrons: 

dxJjW&)K(&, a) - $ ~ ~ ~ d x ' j & ' ) K  

(3.11) 

The expression for the kernel K is very complex and cumbersome because of the 
inhomogeneity of the intrinsic magnetic field of the current. If this inhomogeneity is 
neglected, the kernel K becomes 

i d x )  = -- 

(3.12) 

where 

It1 < 1. (3.13) 
1 - (1 - t 2 ) I j Z  

The integration limits in (3.11) in this case are 

xl,,,jn = max(0,x - 2R) xzmU = min{d/2, x + 2R). (3.14) 



632 N M Makarov et a1 

U u.2 0.4 0.G U.R I 

I 
Figure 3. Plot of the kemel K ( I )  (see (3.13)). 

Note that K ( t )  is an odd function, being positive at f > 0. Its plot at f =- 0 is given in 
figure 3. 

The parameter 01 is 

(3.15) 

By means of (3.8) and (3.9) one can easily ensure that this value does not depend on 
any parameter of the problem, and is a number less than unity. According to (3.1 l), the 
parameter 01 represents the coefficientof the current transfer from the pinch layer 1x1 < xo 
to the periphery and between the neighbouring Larmor current layers. Therefore, we can 
present the solution of (3.1 1) as a series: 

where 

(3.16) 

(3.17) 

(3.18) 

Note that the absolute value of each~subsequent term in the series (3.16) is a-' z 1 times 
smaller than the previous one. 

Let us consider the first term in this series. As follows from (3.8). (3.14) and (3.17), 
the current density jf) differs from zero in the spatial layer 

0 < x  < xo+2R. (3.19) 

This term determines a small correction to jWap in the interval 0 < x < xo and is essential 
in a layer 

xo Q x Q x o f 2 R .  (3.20) 



Sign-alternating current structure 633 

4 2 3 -  ~1 l,zt \ 
4.24 1.18 

I 2 3 

rir, 
1 

4.25 - ~ 

Figure 4. Spatial distribution of the current of the 
h m o r  electrons calculated for CY = 0.3. 

The current density j :) is a sign-alternating function of x .  It proves to be negative in the 
layer (3.20). The appearance of a current flowing in a direction opposite to the electric field 
E is caused by a current transfer from the pinch layer. 

The second term in the series (3.16) is non-zero in the interval 0 < x < xo + 4R.  It 
gives an addition to the currents j,,, and jf) in the region (3.19) and determines the main 
contribution to the current within a layer 

(3.21) 

The current density jp) proves to be positive here. The excitation of-the current in the 
layer (3.21) is a result of the current transfer from the region (3.20). 

Continuing this analysis, we find that the term j:) is non-zero in the interval 0 < x < 
X Q  + 2Rn, but its contribution to the current (3.16) is the main contribution in the region 

(3.22) 

Therefore, the sign-alternating current structure arises in the plate owing to the trajectory 
transfer of the current by the Larmor electrons. The peripheral part of the sample is found 
to be broken into Larmor-current layers with a thickness of about 2R. The current density 
alternates in sign and decreases in magnitude from one layer to another. Figure 4 shows 
the current structure calculated numerically on the basis of (3.16) for a = 0.3. We note the 
fact that the thicknesses of the Larmor-current layers do not equal 2R for finite a. In this 
case several neighbouring terms in the sum (3.16) give a contribution to the current density 
within each layer. The thickness of each Larmor-current layer tends to 2R with a! + 0. 

Figure 5. Dependence of the oscillating factor @ on 
the dimensionless current l / I o  for (I = 0.5. 

~ 

xo+2R < x < xo+4R. 

no + 2R(n - 1) < x < XQ f 2 R n .  
~ The current jf) in the layer (3.22) will be positive if n is even, and negative if n is odd. 
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It is clear that only a finite number of Larmor-current layers can be contained inside 
the periphery part xo < x < d j2  of the plate. This number depends on the current I and 
the plate thickness d. This dependence provides the cvc oscillations. 

4. Current-voltage characteristics 

We now turn to a derivation of the CVC of the plate under pinch-effect conditions. For this 
purpose it is necessary to calculate the total current transported by the trapped and Larmor 
particles: 

z = Zmp + z,. (4.1) 

To obtain the current of the trapped electrons we can use (3.1) for je&), which leads 
to 

Zeap = SRCTQE. (4.2) 

The current of the Larmor particles can he calculated by the formula 

(4.3) 

Substituting (3.11) for the Larmor current density jL(x) into (4.3) and changing the order 
of integration over x and X I ,  we obtain the following expression: 

I 
F ( t )  = dr’K(t’). (4.5) 

We pay particular attention to the second integral in (4.4). It can he seen that the interval 
of integration includes the surface Larmor-current layer. As follows from the analysis carried 
out in section 3, the current density alternates in sign with increasing Z in a quasiperiodical 
manner because the total number of Larmor-current layers depends on Z. Thus the second 
term in (4.4) represents an oscillating function of the total current. As for the first term 
in (4.4), it changes monotonically with Z. 

After substituting (4.2) and (4.4) into (4.1), and making some simple transformations, 
we arrive at the following result for the cvc of the plate: 

4CZPF I, = - 
xed 

Here VQ and IO represent the characteristic values of the voltage and current, respectively, at 
which the thickness 2x0 of the pinch layer is about the sample thickness d ,  L is the sample 
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size along the direction of current flow (along the y axis). Note that (4.6) is valid when 
condition (1.7) for the pinch effect is fulfilled. i.e. at 

Expression (4.6) contains two multipliers. The first of them, changing quadratically 
with current, is caused by the contribution of the trapped particles. Taking account of the 
Larmor electrons results in the appearance of the second multiplier, @, which oscillates with 
increasing I .  The period of such anharmonic oscillations is about ZO; the magnitude of the 
oscillations decreases (as the current Z increases) in an exponential manner, proportional 
to 0 1 ' ' ~ ~ ~ .  The dependence of the oscillating factor @ on Z/Zo in the range (4.8) of strong 
cwents is presented in figure 5 .  This plot was calculated on the basis of (4.6), (4.7) and 
(3.16) for (Y = 0.5. 

5. Experiment and discussion 

We measured the electrical resistances of the rectangular tungsten plates by a four-contact 
method. The plates were cut from crystal bars on an electrical arc machine. The ratio 
psw/p4.2 of the resistances at 300 and 4.2K was equal to 80000. The plates were 
mechanically polished and then etched in a mixture of concentrated nitric. fluoric and 
orthophosphoric acids. In order to fabricate reliable current contacts, we electroplated a 
l o p - t h i c k  layer of tin on the ends of the plates and then soldered copper wires to the 
tin. The voltage leads (0.06mm diameter platinum wire) were welded to the plates by 
discharging a capacitor. The current and voltage contacts were separated by a distance of 
2-3 mm, and the voltage contacts were spaced at least 4 mm apart. 

The dimensions of the plates were 9x0.4x0.14mm3 (Wl), 9x0.27x0.09mm3 (W2), 
13x2x0.03mm3 (W3). 12x0.7x0.12mm3 (W4). All plates had the same orientation. with 
the large face along the (100) plane. 

In the experiment we recorded the cvc of the plates and the current dependence 
of the resistance. The I-V characteristics were recorded by a Hewlett-Packard 
model 3390 integrating potentiometer. A DC current potentiometer measured the resistance. 
Considerably more accurate results were obtained by a modulation technique, which 
enabled us to measure the differential resistance R and record continuous traces R(Z) by 
harmonically modulating the current at low frequency and using a selective amplifier and 
phase detector to select thesignal (proportional to dV/dZ) at the modulation frequency. This 
frequency was low enough so that the skin effect was negligible. Most of the measurements 
were made at 10Hz. The amplitude of the modulation current was 0.2-0.3A. 

The ratio , @ ~ / p 4 . 2  was 400C&10000 for our plates, which was much less than that 
in the starting bars. Resistance measurements in an external longitudinal magnetic field 
Hs revealed that the thinness of the plates, rather than the deformation of the plates, was 
primarily responsible for these small values. Applying the field Hy increased p3~)/p4.2 

almost to the value for the initial bar. Thus for sample W1 (mwIp4.2 = SOOO), the 
application of the longitudinal field decreased the resistance by almost tenfold. We estimated 
the mean free path 1 from the known values of pl  and found that I = 3 mm at T = 1.5 K. 

Since R(Z) was measured for Z e 50 A, less than 0.1 W cm-2 of power was evolved in 
the samples. 

Figure 6 shows a plot of the dependence of the differential resistance R on the cunent 
Z obtained for the sample W2 at a temperature T = 1.5 K. A similar behavior for R(Z) 
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Fiyrc 6. Record of the dependence of the differential 
resistance on the current obtained for the sample W2 at 
T = 1.5 K. 

Figure 7. Dependence of the differential resistance on 
the current at l l d  = 30 and 01 = 0.5, ‘Ro = !4/lo. 

was observed for all samples investigated within the whole temperature interval where 
(1.1) is fulfilled. In accordance with the theoretical predictions of [1,2], the reduction 
in the resistance takes place in the range of weak currents. As was mentioned in the 
introduction, this phenomenon is caused by the appearance of the trapped electron group in 
the sample under conditions (IS). At a value of I % 8 A  the decrease in the resistance is 
superseded with a nearly linear increase. Decaying oscillations of R(Z) are well defined on 
the background of this linear portion. 

In order to compare experimental results with theoretical conclusions we have 
constructed in figure 7 the interpolational curve R(Z), which combines the results of [1,2] 
(for the drop portion) and of this paper. A convenient interpolational formula for the CVC 
was proposed in [7]. However, this formula does not take into account the conductivity of 
the Larmor electrons and does not describe the CVC oscillations. Therefore, we used it only 
for a description of the R(Z) portion in the range Z/lo < 1. The ratio l / d  = 30 characterizes 
the sample W2 at T = 1.5 K, and just this value was chosen for calculations. The R(1) plot 
in the range of strong currents 1/10 z 1 (the oscillating portion) is constructed on the basis 
of (4.6) at 01 = 0.5. Both formulae used give the same value for R at the point I l l 0  = I .  

A comparison of figures 6 and 7 shows their qualitative agreement. Since the sign- 
alternating current structure is a natural feature of the pinch effect in metals, we can conclude 
that this stipulates the experimentally observed R(Z) oscillations. Unfortunately, for several 
reasons, we cannot carry out a quantitative comparison of the curves in figures 6 and 7. 
First, our theory is constructed for the case of strong currents in the range (4.8) where the 
inequality (1.7) holds. Therefore, the theory can quantitatively describe oscillations with 
high numbers, but is applicable only qualitatively for the real experiment where several early 
oscillations at R - d are observed. Furthermore, a plate always has a finite width, a fact that 
was not taken into account in the theory. At the same time, the widths of all experimental 
samples were less than the electron free path. For this reason the spatial distribution of the 
intrinsic magnetic field of the current possessed more complex structure, which affected the 
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current transfer from the pinch layer to the periphery. To analyse this factor one should 
consider theoretically the sign-alternating current structure in an experimentally realizable 
geometry, namely in a wire. 

As well as oscillations of thc c v c ,  auto-oscillations of the voltage in the regime of the 
designated current were observed in [6] in the range of strong currents. We believe that 
the nature of the auto-generation is related to the sign-alternating current structure analysed 
here. Indeed, the layers, where the current flows in the opposite direction to the etectric 
field, arise in the sample as a result of current transfer. This unusual current distribution 
may be the reason for the instability of the stationary state. The problem of the instability 
of the described current structure is of principal interest. 

In conclusion, we note that a sign-alternating current structure, similar to the one studied 
in this work. also arises under conditions of the static skin-effect [SI. In chis case the 
trajectories of the Larmor electrons are formed by a strong external uniform magnetic field 
and a rather weak non-uniform intrinsic magnetic  field^ of a current. The sign-alternating 
current distribution occurs as a result of the current transfer from the static skin-layers into 
the sample bulk. The number of Larmor-current layers depends on the values of the external 
magnetic field and the sample thickness. On the ,basis of the analysis carried out in this 
work, we can conclude that an oscillating dependence of the voltage on the value of the 
external magnetic field should be observed under conditions of the static skin-effect. 

Sign-alternating current striicture . ~~ 
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